330 research outputs found

    Effects of Non-Local Diffusion on Structural MRI Preprocessing and Default Network Mapping: Statistical Comparisons with Isotropic/Anisotropic Diffusion

    Get PDF
    Neuroimaging community usually employs spatial smoothing to denoise magnetic resonance imaging (MRI) data, e.g., Gaussian smoothing kernels. Such an isotropic diffusion (ISD) based smoothing is widely adopted for denoising purpose due to its easy implementation and efficient computation. Beyond these advantages, Gaussian smoothing kernels tend to blur the edges, curvature and texture of images. Researchers have proposed anisotropic diffusion (ASD) and non-local diffusion (NLD) kernels. We recently demonstrated the effect of these new filtering paradigms on preprocessing real degraded MRI images from three individual subjects. Here, to further systematically investigate the effects at a group level, we collected both structural and functional MRI data from 23 participants. We first evaluated the three smoothing strategies' impact on brain extraction, segmentation and registration. Finally, we investigated how they affect subsequent mapping of default network based on resting-state functional MRI (R-fMRI) data. Our findings suggest that NLD-based spatial smoothing maybe more effective and reliable at improving the quality of both MRI data preprocessing and default network mapping. We thus recommend NLD may become a promising method of smoothing structural MRI images of R-fMRI pipeline

    Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks

    Full text link
    We investigate the relationship of resting-state fMRI functional connectivity estimated over long periods of time with time-varying functional connectivity estimated over shorter time intervals. We show that using Pearson's correlation to estimate functional connectivity implies that the range of fluctuations of functional connections over short time scales is subject to statistical constraints imposed by their connectivity strength over longer scales. We present a method for estimating time-varying functional connectivity that is designed to mitigate this issue and allows us to identify episodes where functional connections are unexpectedly strong or weak. We apply this method to data recorded from N=80N=80 participants, and show that the number of unexpectedly strong/weak connections fluctuates over time, and that these variations coincide with intermittent periods of high and low modularity in time-varying functional connectivity. We also find that during periods of relative quiescence regions associated with default mode network tend to join communities with attentional, control, and primary sensory systems. In contrast, during periods where many connections are unexpectedly strong/weak, default mode regions dissociate and form distinct modules. Finally, we go on to show that, while all functional connections can at times manifest stronger (more positively correlated) or weaker (more negatively correlated) than expected, a small number of connections, mostly within the visual and somatomotor networks, do so a disproportional number of times. Our statistical approach allows the detection of functional connections that fluctuate more or less than expected based on their long-time averages and may be of use in future studies characterizing the spatio-temporal patterns of time-varying functional connectivityComment: 47 Pages, 8 Figures, 4 Supplementary Figure

    Homotopic connectivity in drug-naive, first-episode, early-onset schizophrenia

    Get PDF
    BackgroundThe disconnection hypothesis of schizophrenia has been extensively tested in adults. Recent studies have reported the presence of brain disconnection in younger patients, adding evidence to support the neurodevelopmental hypothesis of schizophrenia. Because of drug confounds in chronic and medicated patients, it has been extremely challenging for researchers to directly investigate abnormalities in the development of connectivity and their role in the pathophysiology of schizophrenia. The present study aimed to examine functional homotopy - a measure of interhemispheric connection - and its relevance to clinical symptoms in first-episode drug-naive early-onset schizophrenia (EOS) patients.</p

    Fluctuations between high- and low-modularity topology in time-resolved functional connectivity

    Full text link
    Modularity is an important topological attribute for functional brain networks. Recent studies have reported that modularity of functional networks varies not only across individuals being related to demographics and cognitive performance, but also within individuals co-occurring with fluctuations in network properties of functional connectivity, estimated over short time intervals. However, characteristics of these time-resolved functional networks during periods of high and low modularity have remained largely unexplored. In this study we investigate spatiotemporal properties of time-resolved networks in the high and low modularity periods during rest, with a particular focus on their spatial connectivity patterns, temporal homogeneity and test-retest reliability. We show that spatial connectivity patterns of time-resolved networks in the high and low modularity periods are represented by increased and decreased dissociation of the default mode network module from task-positive network modules, respectively. We also find that the instances of time-resolved functional connectivity sampled from within the high (low) modularity period are relatively homogeneous (heterogeneous) over time, indicating that during the low modularity period the default mode network interacts with other networks in a variable manner. We confirmed that the occurrence of the high and low modularity periods varies across individuals with moderate inter-session test-retest reliability and that it is correlated with previously-reported individual differences in the modularity of functional connectivity estimated over longer timescales. Our findings illustrate how time-resolved functional networks are spatiotemporally organized during periods of high and low modularity, allowing one to trace individual differences in long-timescale modularity to the variable occurrence of network configurations at shorter timescales.Comment: Reorganized the paper; to appear in NeuroImage; arXiv abstract shortened to fit within character limit

    Mind-Body Practice Changes Fractional Amplitude of Low Frequency Fluctuations in Intrinsic Control Networks

    Get PDF
    Cognitive control impairment is a typical symptom largely reported in populations with neurological disorders. Previous studies have provided evidence about the changes in cognitive control induced by mind-body training. However, the neural correlates underlying the effect of extensive mind-body practice on cognitive control remain largely unknown. Using resting-state functional magnetic resonance imaging, we characterized dynamic fluctuations in large-scale intrinsic connectivity networks associated with mind-body practice, and examined their differences between healthy controls and Tai Chi Chuan (TCC) practitioners. Compared with a control group, the TCC group revealed significantly decreased fractional Amplitude of Low Frequency Fluctuations (fALFF) in the bilateral frontoparietal network, default mode network and dorsal prefrontal-angular gyri network. Furthermore, we detected a significant association between mind-body practice experience and fALFF in the default mode network, as well as an association between cognitive control performance and fALFF of the frontoparietal network. This provides the first evidence of large-scale functional connectivity in brain networks associated with mind-body practice, shedding light on the neural network changes that accompany intensive mind-body training. It also highlights the functionally plastic role of the frontoparietal network in the context of the “immune system” of mental health recently developed in relation to flexible hub theory

    Surface-Based Regional Homogeneity in First-Episode, Drug-Naive Major Depression: A Resting-State fMRI Study

    Get PDF
    Background. Previous volume-based regional homogeneity (ReHo) studies neglected the intersubject variability in cortical folding patterns. Recently, surface-based ReHo was developed to reduce the intersubject variability and to increase statistical power. The present study used this novel surface-based ReHo approach to explore the brain functional activity differences between first-episode, drug-naive MDD patients and healthy controls. Methods. Thirty-three first-episode, drug-naive MDD patients and 32 healthy controls participated in structural and resting-state fMRI scans. MDD patients were rated with a 17-item Hamilton Rating Scale for Depression prior to the scan. Results. In comparison with the healthy controls, MDD patients showed reduced surface-based ReHo in the left insula. There was no increase in surface-based ReHo in MDD patients. The surface-based ReHo value in the left insula was not significantly correlated with the clinical information or the depressive scores in the MDD group. Conclusions. The decreased surface-based ReHo in the left insula in MDD may lead to the abnormal top-down cortical-limbic regulation of emotional and cognitive information. The surface-based ReHo may be a useful index to explore the pathophysiological mechanism of MDD.</p

    Generative models of the human connectome

    Get PDF
    The human connectome represents a network map of the brain's wiring diagram and the pattern into which its connections are organized is thought to play an important role in cognitive function. The generative rules that shape the topology of the human connectome remain incompletely understood. Earlier work in model organisms has suggested that wiring rules based on geometric relationships (distance) can account for many but likely not all topological features. Here we systematically explore a family of generative models of the human connectome that yield synthetic networks designed according to different wiring rules combining geometric and a broad range of topological factors. We find that a combination of geometric constraints with a homophilic attachment mechanism can create synthetic networks that closely match many topological characteristics of individual human connectomes, including features that were not included in the optimization of the generative model itself. We use these models to investigate a lifespan dataset and show that, with age, the model parameters undergo progressive changes, suggesting a rebalancing of the generative factors underlying the connectome across the lifespan.Comment: 38 pages, 5 figures + 19 supplemental figures, 1 tabl
    corecore